Have a question?
Message sent Close
Notifications
Clear all

Triangles

170 Posts
29 Users
8 Reactions
55.9 K Views
0

The sides of a right triangle are 3 4 5 

A point is taken on the hypotenuse at a distance of 2 cm from the vertex adjacent to the 4 side. Find the distance from this point to the vertex of the right triangle.

Yamin.yaqoob 02/06/2018 12:56 pm
1527924332689625867304

 

Question 28 sir

TG Team 01/07/2018 2:01 pm
IMG 20180701 135557
TG Team 01/07/2018 2:07 pm

The alternate approach for the question 

The sides of a right triangle are 3 4 5 

A point is taken on the hypotenuse at a distance of 2 cm from the vertex adjacent to the 4 side. Find the distance from this point to the vertex of the right triangle.

104 IMG20180701135605
0

 

Let's say MN intersect AX at O , 

MO = 1/2 BX 

 

∆AMO and ∆ABX are similar triangles so 

 

Area∆ AMO/ Area∆ABX = MO²/BX² = 1/4 

 

So if Area of ∆AMO = x ,then  Area ABX = 4x and Area MOXB = 4x - x = 3x ( shaded area ) 

 

 

Area of ∆ABC = 2 × Area ∆ABX = 8x 

 

Hence required ratio = 3x/ 8x = 3 : 8 

0

two medians PS and RT of ∆PQR intersect at G at right angles. If PS=9 cm and RT =6cm then the length of RT is

a) 10 

b)6

c)5

d)3

 

TG Team 09/07/2018 2:41 pm

Hi Nancy 

 

Please see if the question is complete. 

 

I thing there is a typographical error , the length of RT ( 6cm ) is already mentioned in the  question . 

Nancyjain 09/07/2018 3:33 pm

Two medians PS and RT of ∆PQR intersect at G at right angles. If PS =9CM and  RT =6 cm,then length of RS is

a) 10

B) 6

C)5

D)3

TG Team 09/07/2018 4:09 pm

Centroid divides the medians in 2 : 1 .

So PG : GS = 2 : 1

GS = 3 cm , PG = 6 cm

Again RG : GT = 2 : 1

GT = 2cm , RG = 4 cm

∆GSR is a right angled ∆ .

So , RS² = RG² + GS²

RS ² = 3² + 4²

RS = √25 = 5 .

 

 

 

FB IMG 1531132622263
0

ABCD is a parallelogram, AC and BD are diagonals intersecting at O. X and Y are centroids of ∆ADC and ∆ABC respectively. If BY=6 then OX=?

A)2

B)3

C)4

D)6

TG Team 10/07/2018 12:52 am

Since centroid divides the median in 2 : 1 , 

 

BO : OY = 2 : 1 

 

OY = 6/2 = 3. 

 

OY = OX = 3.

 

Option (B)  

0

Hi Sir, can you help me with this question? P.S- I was not able to post it in "Circles" section, so posting it here.

WhatsApp Image 2018 07 25 at 21.46.10
TG Team 25/07/2018 10:38 pm

Hello Richa , 

Here , OC = Altitude on AB = Sum of diameters of the circles + radius of the largest circle 

OC = 9 + 6 + 2 + 2/3 +..... = 9 + ( 6)/ ( 1-1/3) = 18 

Area of the Triangle ABC = 1/2 x OC x AB 

1/2 x 18 x 18 = 162 sq units . 

0

A right triangle with integer side lengths a, b and c satisfies a<b<c and a+c=81. what is the maximum area of the triangle given these conditions?

(A)  480 unit sq
(B) 504
(C)580
(D) 630 

0
New Doc 2018 07 30

Sir please solve this question 

TG Team 30/07/2018 5:53 pm

Hello Samyak, 

PFA the solution . 

37072673 1723232954460995 5394756069425676288 o
aniket prajapati 30/07/2018 5:54 pm

samyak

20180730 174719

 

0

Hey Sir, please help with this problem:

IMG 20180801 135002
TG Team 01/08/2018 2:15 pm

Hello Richa , 

 

In triangles ADC and BDE 

 

Angle A = Angle B 

 

Angle D = Angle D  (Each 90)

 

Hence , triangle ADC similar triangle BDE 

 

AD/CD = BD/ED 

 

8/4 = 6/ ED 

 

ED = 3 units . 

0

find value of x ?

Untitled
0

find x if given quadrilateral is parllelogram

Untitled
TG Team 07/08/2018 4:48 pm

Hello Aniket , 

PFA the solution 

x = 22.5 

Geo
0

Hey Sir, posting a question below. Please help with the solution.

 

In a triangle ABC, BC =24, AC=18 and the medians to side BC and AC are perpendicular. Find AB.

TG Team 08/08/2018 11:38 am
IMG 20180808 113404
TG Team 08/08/2018 11:40 am

Alternate Approach : 

IMG 20180808 113427
0
15337136250172025190461
15337134371231572079249

Sir please explain  this solution

TG Team 08/08/2018 3:39 pm

Sides: a, a  and 1 

Two cases:
(i) a is an even integer  , sum of two even integer and 1 is always odd 

(ii) a is an odd integer , 

odd integer  + odd integer  + 1 = an odd integer 

so Option C is false . 

Using Pythagoras Theorem : Altitude of the triangle = sqrt {a^2 - (1/2)^2} = 

Area = 1/2 x Base x Altitude 

=> sqrt{4a^2 -1}/4

4a^2 is a perfect square, so sqrt{4a^2 -1} is irrational 

So area is always an irrational Number . 

0
20180819 071535
TG Team 19/08/2018 11:47 am

Triangle CAD ~ Triangle ABD 

CD/AD = AD/BD 

AD² = CD × BD 

16  = CD × 6 

CD = 16/6 

BC = 8/3 + 6 = 26/3 

Option (A) 

0

cos (2pi/7) + cos (4pi/7) + cos (6pi/7) = ?

options are 1, 1/2, -1/2, -1,

0
New Doc 2018 08 20

Sir please solve this problem. 

TG Team 21/08/2018 2:15 pm
IMG 20180821 140909
Page 2 / 6